1
JEE Main 2019 (Online) 11th January Morning Slot
+4
-1
If  $$\int {{{\sqrt {1 - {x^2}} } \over {{x^4}}}}$$ dx = A(x)$${\left( {\sqrt {1 - {x^2}} } \right)^m}$$ + C, for a suitable chosen integer m and a function A(x), where C is a constant of integration, then (A(x))m equals :
A
$${1 \over {27{x^6}}}$$
B
$${{ - 1} \over {27{x^9}}}$$
C
$${1 \over {9{x^4}}}$$
D
$${1 \over {3{x^3}}}$$
2
JEE Main 2019 (Online) 10th January Evening Slot
+4
-1
If  $$\int \,$$x5.e$$-$$4x3 dx = $${1 \over {48}}$$e$$-$$4x3 f(x) + C, where C is a constant of inegration, then f(x) is equal to -
A
$$-$$2x3 $$-$$ 1
B
$$-$$ 2x3 + 1
C
4x3 + 1
D
$$-$$4x3 $$-$$ 1
3
JEE Main 2019 (Online) 10th January Morning Slot
+4
-1
Let n $$\ge$$ 2 be a natural number and $$0 < \theta < {\pi \over 2}.$$ Then $$\int {{{{{\left( {{{\sin }^n}\theta - \sin \theta } \right)}^{1/n}}\cos \theta } \over {{{\sin }^{n + 1}}\theta }}} \,d\theta$$ is equal to - (where C is a constant of integration)
A
$${n \over {{n^2} - 1}}{\left( {1 + {1 \over {{{\sin }^{n - 1}}\theta }}} \right)^{{{n + 1} \over n}}} + C$$
B
$${n \over {{n^2} - 1}}{\left( {1 - {1 \over {{{\sin }^{n + 1}}\theta }}} \right)^{{{n + 1} \over n}}} + C$$
C
$${n \over {{n^2} - 1}}{\left( {1 - {1 \over {{{\sin }^{n - 1}}\theta }}} \right)^{{{n + 1} \over n}}} + C$$
D
$${n \over {{n^2} + 1}}{\left( {1 - {1 \over {{{\sin }^{n - 1}}\theta }}} \right)^{{{n + 1} \over n}}} + C$$
4
JEE Main 2019 (Online) 9th January Evening Slot
+4
-1
If   $$f\left( x \right) = \int {{{5{x^8} + 7{x^6}} \over {{{\left( {{x^2} + 1 + 2{x^7}} \right)}^2}}}} \,dx,\,\left( {x \ge 0} \right),$$

$$f\left( 0 \right) = 0,$$    then the value of $$f(1)$$ is :
A
$$-$$ $${1 \over 2}$$
B
$$-$$ $${1 \over 4}$$
C
$${1 \over 2}$$
D
$${1 \over 4}$$
EXAM MAP
Medical
NEET