1
JEE Main 2022 (Online) 27th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\int {{{({x^2} + 1){e^x}} \over {{{(x + 1)}^2}}}dx = f(x){e^x} + C} $$, where C is a constant, then $${{{d^3}f} \over {d{x^3}}}$$ at x = 1 is equal to :
A
$$ - {3 \over 4}$$
B
$${3 \over 4}$$
C
$$ - {3 \over 2}$$
D
$${3 \over 2}$$
2
JEE Main 2022 (Online) 26th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\int {{1 \over x}\sqrt {{{1 - x} \over {1 + x}}} dx = g(x) + c} $$, $$g(1) = 0$$, then $$g\left( {{1 \over 2}} \right)$$ is equal to :

A
$${\log _e}\left( {{{\sqrt 3 - 1} \over {\sqrt 3 + 1}}} \right) + {\pi \over 3}$$
B
$${\log _e}\left( {{{\sqrt 3 + 1} \over {\sqrt 3 - 1}}} \right) + {\pi \over 3}$$
C
$${\log _e}\left( {{{\sqrt 3 + 1} \over {\sqrt 3 - 1}}} \right) - {\pi \over 3}$$
D
$${1 \over 2}{\log _e}\left( {{{\sqrt 3 - 1} \over {\sqrt 3 + 1}}} \right) - {\pi \over 6}$$
3
JEE Main 2021 (Online) 31st August Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{1 \over {\root 4 \of {{{(x - 1)}^3}{{(x + 2)}^5}} }}} \,dx$$ is equal to : (where C is a constant of integration)
A
$${3 \over 4}{\left( {{{x + 2} \over {x - 1}}} \right)^{{1 \over 4}}} + C$$
B
$${3 \over 4}{\left( {{{x + 2} \over {x - 1}}} \right)^{{5 \over 4}}} + C$$
C
$${4 \over 3}{\left( {{{x - 1} \over {x + 2}}} \right)^{{1 \over 4}}} + C$$
D
$${4 \over 3}{\left( {{{x - 1} \over {x + 2}}} \right)^{{5 \over 4}}} + C$$
4
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{(2x - 1)\cos \sqrt {{{(2x - 1)}^2} + 5} } \over {\sqrt {4{x^2} - 4x + 6} }}} dx$$ is equal to (where c is a constant of integration)
A
$${1 \over 2}\sin \sqrt {{{(2x - 1)}^2} + 5} + c$$
B
$${1 \over 2}\cos \sqrt {{{(2x + 1)}^2} + 5} + c$$
C
$${1 \over 2}\cos \sqrt {{{(2x - 1)}^2} + 5} + c$$
D
$${1 \over 2}\sin \sqrt {{{(2x + 1)}^2} + 5} + c$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12