1
JEE Main 2019 (Online) 10th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If  $$\int \, $$x5.e$$-$$4x3 dx = $${1 \over {48}}$$e$$-$$4x3 f(x) + C, where C is a constant of inegration, then f(x) is equal to -
A
$$-$$2x3 $$-$$ 1
B
$$-$$ 2x3 + 1
C
4x3 + 1
D
$$-$$4x3 $$-$$ 1
2
JEE Main 2019 (Online) 10th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let n $$ \ge $$ 2 be a natural number and $$0 < \theta < {\pi \over 2}.$$ Then $$\int {{{{{\left( {{{\sin }^n}\theta - \sin \theta } \right)}^{1/n}}\cos \theta } \over {{{\sin }^{n + 1}}\theta }}} \,d\theta $$ is equal to - (where C is a constant of integration)
A
$${n \over {{n^2} - 1}}{\left( {1 + {1 \over {{{\sin }^{n - 1}}\theta }}} \right)^{{{n + 1} \over n}}} + C$$
B
$${n \over {{n^2} - 1}}{\left( {1 - {1 \over {{{\sin }^{n + 1}}\theta }}} \right)^{{{n + 1} \over n}}} + C$$
C
$${n \over {{n^2} - 1}}{\left( {1 - {1 \over {{{\sin }^{n - 1}}\theta }}} \right)^{{{n + 1} \over n}}} + C$$
D
$${n \over {{n^2} + 1}}{\left( {1 - {1 \over {{{\sin }^{n - 1}}\theta }}} \right)^{{{n + 1} \over n}}} + C$$
3
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If   $$f\left( x \right) = \int {{{5{x^8} + 7{x^6}} \over {{{\left( {{x^2} + 1 + 2{x^7}} \right)}^2}}}} \,dx,\,\left( {x \ge 0} \right),$$

$$f\left( 0 \right) = 0,$$    then the value of $$f(1)$$ is :
A
$$ - $$ $${1 \over 2}$$
B
$$ - $$ $${1 \over 4}$$
C
$${1 \over 2}$$
D
$${1 \over 4}$$
4
JEE Main 2019 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
For x2 $$ \ne $$ n$$\pi $$ + 1, n $$ \in $$ N (the set of natural numbers), the integral

$$\int {x\sqrt {{{2\sin ({x^2} - 1) - \sin 2({x^2} - 1)} \over {2\sin ({x^2} - 1) + \sin 2({x^2} - 1)}}} dx} $$ is equal to :

(where c is a constant of integration)
A
$${\log _e}\left| {{1 \over 2}{{\sec }^2}\left( {{x^2} - 1} \right)} \right| + c$$
B
$${1 \over 2}{\log _e}\left| {\sec \left( {{x^2} - 1} \right)} \right| + c$$
C
$${1 \over 2}{\log _e}\left| {{{\sec }^2}\left( {{{{x^2} - 1} \over 2}} \right)} \right| + c$$
D
$${\log _e}\left| {\sec \left( {{{{x^2} - 1} \over 2}} \right)} \right| + c$$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12