If $\int \mathrm{e}^x\left(\frac{x \sin ^{-1} x}{\sqrt{1-x^2}}+\frac{\sin ^{-1} x}{\left(1-x^2\right)^{3 / 2}}+\frac{x}{1-x^2}\right) \mathrm{d} x=\mathrm{g}(x)+\mathrm{C}$, where C is the constant of integration, then $g\left(\frac{1}{2}\right)$ equals :
Let $$\int \frac{2-\tan x}{3+\tan x} \mathrm{~d} x=\frac{1}{2}\left(\alpha x+\log _e|\beta \sin x+\gamma \cos x|\right)+C$$, where $$C$$ is the constant of integration. Then $$\alpha+\frac{\gamma}{\beta}$$ is equal to :
Let $$I(x)=\int \frac{6}{\sin ^2 x(1-\cot x)^2} d x$$. If $$I(0)=3$$, then $$I\left(\frac{\pi}{12}\right)$$ is equal to
If $$\int \frac{1}{\mathrm{a}^2 \sin ^2 x+\mathrm{b}^2 \cos ^2 x} \mathrm{~d} x=\frac{1}{12} \tan ^{-1}(3 \tan x)+$$ constant, then the maximum value of $$\mathrm{a} \sin x+\mathrm{b} \cos x$$, is :