1
JEE Main 2020 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{dx} \over {{{(x + 4)}^{{8 \over 7}}}{{(x - 3)}^{{6 \over 7}}}}}} $$ is equal to :
(where C is a constant of integration)
A
$${1 \over 2}{\left( {{{x - 3} \over {x + 4}}} \right)^{{3 \over 7}}} + C$$
B
$${\left( {{{x - 3} \over {x + 4}}} \right)^{{1 \over 7}}} + C$$
C
$$ - {1 \over {13}}{\left( {{{x - 3} \over {x + 4}}} \right)^{{{13} \over 7}}} + C$$
D
-$${\left( {{{x - 3} \over {x + 4}}} \right)^{-{1 \over 7}}} + C$$
2
JEE Main 2020 (Online) 8th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\int {{{\cos xdx} \over {{{\sin }^3}x{{\left( {1 + {{\sin }^6}x} \right)}^{2/3}}}}} = f\left( x \right){\left( {1 + {{\sin }^6}x} \right)^{1/\lambda }} + c$$

where c is a constant of integration, then $$\lambda f\left( {{\pi \over 3}} \right)$$ is equal to
A
$${9 \over 8}$$
B
2
C
-2
D
$$-{9 \over 8}$$
3
JEE Main 2019 (Online) 12th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$a \in \left( {0,{\pi \over 2}} \right)$$ be fixed. If the integral

$$\int {{{\tan x + \tan \alpha } \over {\tan x - \tan \alpha }}} dx$$ = A(x) cos 2$$\alpha $$ + B(x) sin 2$$\alpha $$ + C, where C is a

constant of integration, then the functions A(x) and B(x) are respectively :
A
$$x - \alpha $$ and $${\log _e}\left| {\cos \left( {x - \alpha } \right)} \right|$$
B
$$x + \alpha $$ and $${\log _e}\left| {\sin \left( {x - \alpha } \right)} \right|$$
C
$$x + \alpha $$ and $${\log _e}\left| {\sin \left( {x + \alpha } \right)} \right|$$
D
$$x - \alpha $$ and $${\log _e}\left| {\sin \left( {x - \alpha } \right)} \right|$$
4
JEE Main 2019 (Online) 12th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{2{x^3} - 1} \over {{x^4} + x}}} dx$$ is equal to :
(Here C is a constant of integration)
A
$${\log _e}{{\left| {{x^3} + 1} \right|} \over {{x^2}}} + C$$
B
$${1 \over 2}{\log _e}{{\left| {{x^3} + 1} \right|} \over {{x^2}}} + C$$
C
$${\log _e}\left| {{{{x^3} + 1} \over x}} \right| + C$$
D
$${1 \over 2}{\log _e}{{{{\left( {{x^3} + 1} \right)}^2}} \over {\left| {{x^3}} \right|}} + C$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12