1
JEE Main 2016 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{2{x^{12}} + 5{x^9}} \over {{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} dx$$ is equal to :
A
$${{{x^5}} \over {2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
B
$${{ - {x^{10}}} \over {2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
C
$${{{-x^5}} \over {{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
D
$${{ {x^{10}}} \over {2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
2
JEE Main 2015 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{dx} \over {{x^2}{{\left( {{x^4} + 1} \right)}^{3/4}}}}} $$ equals :
A
$$ - {\left( {{x^4} + 1} \right)^{{1 \over 4}}} + c$$
B
$$ - {\left( {{{{x^4} + 1} \over {{x^4}}}} \right)^{{1 \over 4}}} + c$$
C
$$ {\left( {{{{x^4} + 1} \over {{x^4}}}} \right)^{{1 \over 4}}} + c$$
D
$$ {\left( {{x^4} + 1} \right)^{{1 \over 4}}} + c$$
3
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
The integral $$\int {\left( {1 + x - {1 \over x}} \right){e^{x + {1 \over x}}}dx} $$ is equal to
A
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 64 English Option 1
B
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 64 English Option 2
C
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 64 English Option 3
D
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 64 English Option 4
4
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
If $$\int {f\left( x \right)dx = \psi \left( x \right),} $$ then $$\int {{x^5}f\left( {{x^3}} \right)dx} $$ is equal to
A
$${1 \over 3}\left[ {{x^3}\psi \left( {{x^3}} \right) - \int {{x^2}\psi \left( {{x^3}} \right)dx} } \right] + C$$
B
$${1 \over 3}{x^3}\psi \left( {{x^3}} \right) - 3\int {{x^3}\psi \left( {{x^3}} \right)dx} + C$$
C
$${1 \over 3}{x^3}\psi \left( {{x^3}} \right) - \int {{x^2}\psi \left( {{x^3}} \right)dx} + C$$
D
$${1 \over 3}\left[ {{x^3}\psi \left( {{x^3}} \right) - \int {{x^3}\psi \left( {{x^3}} \right)dx} } \right] + C$$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12