1
JEE Main 2024 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\int \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sqrt{\sin ^3 x \cos ^3 x \sin (x-\theta)}} d x=A \sqrt{\cos \theta \tan x-\sin \theta}+B \sqrt{\cos \theta-\sin \theta \cot x}+C$$, where $$C$$ is the integration constant, then $$A B$$ is equal to

A
$$2 \sec \theta$$
B
$$8 \operatorname{cosec}(2 \theta)$$
C
$$4 \operatorname{cosec}(2 \theta)$$
D
$$4 \sec \theta$$
2
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $$x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$, if $$y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^2 x} d x$$, and $$\lim _\limits{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0$$ then $$y\left(\frac{\pi}{4}\right)$$ is equal to

A
$$-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
B
$$\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
C
$$\frac{1}{2} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
D
$$\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)$$
3
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\text { The integral } \int \frac{\left(x^8-x^2\right) \mathrm{d} x}{\left(x^{12}+3 x^6+1\right) \tan ^{-1}\left(x^3+\frac{1}{x^3}\right)} \text { is equal to : }$$

A
$$\log _{\mathrm{e}}\left(\left|\tan ^{-1}\left(x^3+\frac{1}{x^3}\right)\right|\right)^{1 / 3}+\mathrm{C}$$
B
$$\log _{\mathrm{e}}\left(\left|\tan ^{-1}\left(x^3+\frac{1}{x^3}\right)\right|\right)+\mathrm{C}$$
C
$$\log _{\mathrm{e}}\left(\left|\tan ^{-1}\left(x^3+\frac{1}{x^3}\right)\right|\right)^{1 / 2}+\mathrm{C}$$
D
$$\log _{\mathrm{e}}\left(\left|\tan ^{-1}\left(x^3+\frac{1}{x^3}\right)\right|\right)^3+\mathrm{C}$$
4
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $$\alpha, \beta, \gamma, \delta \in \mathbb{N}$$, if $$\int\left(\left(\frac{x}{e}\right)^{2 x}+\left(\frac{e}{x}\right)^{2 x}\right) \log _{e} x d x=\frac{1}{\alpha}\left(\frac{x}{e}\right)^{\beta x}-\frac{1}{\gamma}\left(\frac{e}{x}\right)^{\delta x}+C$$ , where $$e=\sum_\limits{n=0}^{\infty} \frac{1}{n !}$$ and $$\mathrm{C}$$ is constant of integration, then $$\alpha+2 \beta+3 \gamma-4 \delta$$ is equal to :

A
$$-8$$
B
$$-4$$
C
1
D
4

JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12