This chapter is currently out of syllabus
1
JEE Main 2022 (Online) 24th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

The number of solutions of the equation

$$\cos \left( {x + {\pi \over 3}} \right)\cos \left( {{\pi \over 3} - x} \right) = {1 \over 4}{\cos ^2}2x$$, $$x \in [ - 3\pi ,3\pi ]$$ is :

A
8
B
5
C
6
D
7
2
JEE Main 2022 (Online) 24th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let $$S = \left\{ {\theta \in [ - \pi ,\pi ] - \left\{ { \pm \,\,{\pi \over 2}} \right\}:\sin \theta \tan \theta + \tan \theta = \sin 2\theta } \right\}$$.

If $$T = \sum\limits_{\theta \, \in \,S}^{} {\cos 2\theta } $$, then T + n(S) is equal to :

A
7 + $$\sqrt 3 $$
B
9
C
8 + $$\sqrt 3 $$
D
10
3
JEE Main 2021 (Online) 1st September Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
If n is the number of solutions of the equation
$$2\cos x\left( {4\sin \left( {{\pi \over 4} + x} \right)\sin \left( {{\pi \over 4} - x} \right) - 1} \right) = 1,x \in [0,\pi ]$$ and S is the sum of all these solutions, then the ordered pair (n, S) is :
A
(3, 13$$\pi$$ / 9)
B
(2, 2$$\pi$$ / 3)
C
(2, 8$$\pi$$ / 9)
D
(3, 5$$\pi$$ / 3)
4
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
The number of solutions of the equation $${32^{{{\tan }^2}x}} + {32^{{{\sec }^2}x}} = 81,\,0 \le x \le {\pi \over 4}$$ is :
A
3
B
1
C
0
D
2
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12