This chapter is currently out of syllabus
1
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$2 \tan ^2 \theta-5 \sec \theta=1$$ has exactly 7 solutions in the interval $$\left[0, \frac{n \pi}{2}\right]$$, for the least value of $$n \in \mathbf{N}$$, then $$\sum_\limits{k=1}^n \frac{k}{2^k}$$ is equal to:

A
$$\frac{1}{2^{14}}\left(2^{15}-15\right)$$
B
$$1-\frac{15}{2^{13}}$$
C
$$\frac{1}{2^{15}}\left(2^{14}-14\right)$$
D
$$\frac{1}{2^{13}}\left(2^{14}-15\right)$$
2
JEE Main 2023 (Online) 11th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

The number of elements in the set

$$S=\left\{\theta \in[0,2 \pi]: 3 \cos ^{4} \theta-5 \cos ^{2} \theta-2 \sin ^{6} \theta+2=0\right\}$$ is :

A
9
B
8
C
12
D
10
3
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let $$S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^{2} x}+9^{\tan ^{2} x}=10\right\}$$ and $$\beta=\sum_\limits{x \in S} \tan ^{2}\left(\frac{x}{3}\right)$$, then $$\frac{1}{6}(\beta-14)^{2}$$ is equal to :

A
16
B
32
C
8
D
64
4
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

The number of elements in the set $$S=\left\{x \in \mathbb{R}: 2 \cos \left(\frac{x^{2}+x}{6}\right)=4^{x}+4^{-x}\right\}$$ is :

A
1
B
3
C
0
D
infinite
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12