Let $$S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^{2} x}+9^{\tan ^{2} x}=10\right\}$$ and $$\beta=\sum_\limits{x \in S} \tan ^{2}\left(\frac{x}{3}\right)$$, then $$\frac{1}{6}(\beta-14)^{2}$$ is equal to :
The number of elements in the set $$S=\left\{x \in \mathbb{R}: 2 \cos \left(\frac{x^{2}+x}{6}\right)=4^{x}+4^{-x}\right\}$$ is :
Let $$S=\left\{\theta \in\left(0, \frac{\pi}{2}\right): \sum\limits_{m=1}^{9} \sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}\right\}$$. Then
Let $$S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\} .$$ Then $$n(s) + \sum\limits_{\theta \in S}^{} {\left( {\sec \left( {{\pi \over 4} + 2\theta } \right)\cos ec\left( {{\pi \over 4} + 2\theta } \right)} \right)} $$ is equal to: