This chapter is currently out of syllabus
1
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $\theta \epsilon\left[-\frac{7 \pi}{6}, \frac{4 \pi}{3}\right]$, then the number of solutions of $\sqrt{3} \operatorname{cosec}^2 \theta-2(\sqrt{3}-1) \operatorname{cosec} \theta-4=0$, is equal to :
A
7
B
10
C
6
D
8
2
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $\theta \in[-2 \pi, 2 \pi]$, then the number of solutions of $2 \sqrt{2} \cos ^2 \theta+(2-\sqrt{6}) \cos \theta-\sqrt{3}=0$, is equal to:

A
8
B
6
C
10
D
12
3
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of all values of $\theta \in[0,2 \pi]$ satisfying $2 \sin ^2 \theta=\cos 2 \theta$ and $2 \cos ^2 \theta=3 \sin \theta$ is

A
$\pi$
B
$\frac{5 \pi}{6}$
C
$\frac{\pi}{2}$
D
$4 \pi$
4
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$|\cos \theta \cos (60-\theta) \cos (60+\theta)| \leq \frac{1}{8}, \theta \epsilon[0,2 \pi]$$. Then, the sum of all $$\theta \in[0,2 \pi]$$, where $$\cos 3 \theta$$ attains its maximum value, is :

A
$$6 \pi$$
B
$$9 \pi$$
C
$$18 \pi$$
D
$$15 \pi$$
JEE Main Subjects
EXAM MAP