This chapter is currently out of syllabus
1
JEE Main 2024 (Online) 30th January Morning Shift
+4
-1

If $$2 \sin ^3 x+\sin 2 x \cos x+4 \sin x-4=0$$ has exactly 3 solutions in the interval $$\left[0, \frac{\mathrm{n} \pi}{2}\right], \mathrm{n} \in \mathrm{N}$$, then the roots of the equation $$x^2+\mathrm{n} x+(\mathrm{n}-3)=0$$ belong to :

A
$$(0, \infty)$$
B
Z
C
$$\left(-\frac{\sqrt{17}}{2}, \frac{\sqrt{17}}{2}\right)$$
D
$$(-\infty, 0)$$
2
JEE Main 2024 (Online) 29th January Evening Shift
+4
-1

The sum of the solutions $$x \in \mathbb{R}$$ of the equation $$\frac{3 \cos 2 x+\cos ^3 2 x}{\cos ^6 x-\sin ^6 x}=x^3-x^2+6$$ is

A
3
B
1
C
0
D
$$-$$1
3
JEE Main 2024 (Online) 29th January Morning Shift
+4
-1

If $$\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$$ is the solution of $$4 \cos \theta+5 \sin \theta=1$$, then the value of $$\tan \alpha$$ is

A
$$\frac{10-\sqrt{10}}{12}$$
B
$$\frac{\sqrt{10}-10}{6}$$
C
$$\frac{\sqrt{10}-10}{12}$$
D
$$\frac{10-\sqrt{10}}{6}$$
4
JEE Main 2024 (Online) 27th January Evening Shift
+4
-1

If $$2 \tan ^2 \theta-5 \sec \theta=1$$ has exactly 7 solutions in the interval $$\left[0, \frac{n \pi}{2}\right]$$, for the least value of $$n \in \mathbf{N}$$, then $$\sum_\limits{k=1}^n \frac{k}{2^k}$$ is equal to:

A
$$\frac{1}{2^{14}}\left(2^{15}-15\right)$$
B
$$1-\frac{15}{2^{13}}$$
C
$$\frac{1}{2^{15}}\left(2^{14}-14\right)$$
D
$$\frac{1}{2^{13}}\left(2^{14}-15\right)$$
EXAM MAP
Medical
NEET