This chapter is currently out of syllabus
1
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$2 \sin ^3 x+\sin 2 x \cos x+4 \sin x-4=0$$ has exactly 3 solutions in the interval $$\left[0, \frac{\mathrm{n} \pi}{2}\right], \mathrm{n} \in \mathrm{N}$$, then the roots of the equation $$x^2+\mathrm{n} x+(\mathrm{n}-3)=0$$ belong to :

A
$$(0, \infty)$$
B
Z
C
$$\left(-\frac{\sqrt{17}}{2}, \frac{\sqrt{17}}{2}\right)$$
D
$$(-\infty, 0)$$
2
JEE Main 2024 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of the solutions $$x \in \mathbb{R}$$ of the equation $$\frac{3 \cos 2 x+\cos ^3 2 x}{\cos ^6 x-\sin ^6 x}=x^3-x^2+6$$ is

A
3
B
1
C
0
D
$$-$$1
3
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$$ is the solution of $$4 \cos \theta+5 \sin \theta=1$$, then the value of $$\tan \alpha$$ is

A
$$\frac{10-\sqrt{10}}{12}$$
B
$$\frac{\sqrt{10}-10}{6}$$
C
$$\frac{\sqrt{10}-10}{12}$$
D
$$\frac{10-\sqrt{10}}{6}$$
4
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$2 \tan ^2 \theta-5 \sec \theta=1$$ has exactly 7 solutions in the interval $$\left[0, \frac{n \pi}{2}\right]$$, for the least value of $$n \in \mathbf{N}$$, then $$\sum_\limits{k=1}^n \frac{k}{2^k}$$ is equal to:

A
$$\frac{1}{2^{14}}\left(2^{15}-15\right)$$
B
$$1-\frac{15}{2^{13}}$$
C
$$\frac{1}{2^{15}}\left(2^{14}-14\right)$$
D
$$\frac{1}{2^{13}}\left(2^{14}-15\right)$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12