This chapter is currently out of syllabus
1
JEE Main 2022 (Online) 29th July Evening Shift
+4
-1
Out of Syllabus

The number of elements in the set $$S=\left\{x \in \mathbb{R}: 2 \cos \left(\frac{x^{2}+x}{6}\right)=4^{x}+4^{-x}\right\}$$ is :

A
1
B
3
C
0
D
infinite
2
JEE Main 2022 (Online) 27th July Evening Shift
+4
-1
Out of Syllabus

Let $$S=\left\{\theta \in\left(0, \frac{\pi}{2}\right): \sum\limits_{m=1}^{9} \sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}\right\}$$. Then

A
$$S=\left\{\frac{\pi}{12}\right\}$$
B
$$S=\left\{\frac{2 \pi}{3}\right\}$$
C
$$\sum\limits_{\theta \in S} \theta=\frac{\pi}{2}$$
D
$$\sum\limits_{\theta \in S} \theta=\frac{3\pi}{4}$$
3
JEE Main 2022 (Online) 26th July Morning Shift
+4
-1
Out of Syllabus

Let $$S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\} .$$ Then $$n(s) + \sum\limits_{\theta \in S}^{} {\left( {\sec \left( {{\pi \over 4} + 2\theta } \right)\cos ec\left( {{\pi \over 4} + 2\theta } \right)} \right)}$$ is equal to:

A
0
B
$$-$$2
C
$$-$$4
D
12
4
JEE Main 2022 (Online) 25th July Morning Shift
+4
-1
Out of Syllabus

The number of solutions of $$|\cos x|=\sin x$$, such that $$-4 \pi \leq x \leq 4 \pi$$ is :

A
4
B
6
C
8
D
12
EXAM MAP
Medical
NEET