This chapter is currently out of syllabus
1
JEE Main 2021 (Online) 25th February Morning Shift
+4
-1
Out of Syllabus
All possible values of $$\theta$$ $$\in$$ [0, 2$$\pi$$] for which sin 2$$\theta$$ + tan 2$$\theta$$ > 0 lie in :
A
$$\left( {0,{\pi \over 4}} \right) \cup \left( {{\pi \over 2},{{3\pi } \over 4}} \right) \cup \left( {{{3\pi } \over 2},{{11\pi } \over 6}} \right)$$
B
$$\left( {0,{\pi \over 2}} \right) \cup \left( {\pi ,{{3\pi } \over 2}} \right)$$
C
$$\left( {0,{\pi \over 2}} \right) \cup \left( {{\pi \over 2},{{3\pi } \over 4}} \right) \cup \left( {\pi ,{{7\pi } \over 6}} \right)$$
D
$$\left( {0,{\pi \over 4}} \right) \cup \left( {{\pi \over 2},{{3\pi } \over 4}} \right) \cup \left( {\pi ,{{5\pi } \over 4}} \right) \cup \left( {{{3\pi } \over 2},{{7\pi } \over 4}} \right)$$
2
JEE Main 2019 (Online) 12th April Evening Slot
+4
-1
Out of Syllabus
If [x] denotes the greatest integer $$\le$$ x, then the system of linear equations [sin $$\theta$$]x + [–cos$$\theta$$]y = 0, [cot$$\theta$$]x + y = 0
A
has a unique solution if $$\theta \in \left( {{\pi \over 2},{{2\pi } \over 3}} \right)$$ and have infinitely many solutions if $$\theta \in \left( {\pi ,{{7\pi } \over 6}} \right)$$
B
have infinitely many solutions if $$\theta \in \left( {{\pi \over 2},{{2\pi } \over 3}} \right)$$ and has a unique solution if $$\theta \in \left( {\pi ,{{7\pi } \over 6}} \right)$$
C
have infinitely many solutions if $$\theta \in \left( {{\pi \over 2},{{2\pi } \over 3}} \right) \cup \left( {\pi ,{{7\pi } \over 6}} \right)$$
D
has a unique solution if $$\theta \in \left( {{\pi \over 2},{{2\pi } \over 3}} \right) \cup \left( {\pi ,{{7\pi } \over 6}} \right)$$
3
JEE Main 2019 (Online) 12th April Evening Slot
+4
-1
Out of Syllabus
Let S be the set of all $$\alpha$$ $$\in$$ R such that the equation, cos2x + $$\alpha$$sinx = 2$$\alpha$$– 7 has a solution. Then S is equal to :
A
[2, 6]
B
[3, 7]
C
[1, 4]
D
R
4
JEE Main 2019 (Online) 12th April Morning Slot
+4
-1
Out of Syllabus
The number of solutions of the equation
1 + sin4 x = cos23x, $$x \in \left[ { - {{5\pi } \over 2},{{5\pi } \over 2}} \right]$$ is :
A
5
B
3
C
7
D
4
EXAM MAP
Medical
NEET
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12