Let $$\mathrm{D}_{\mathrm{k}}=\left|\begin{array}{ccc}1 & 2 k & 2 k-1 \\ n & n^{2}+n+2 & n^{2} \\ n & n^{2}+n & n^{2}+n+2\end{array}\right|$$. If $$\sum_\limits{k=1}^{n} \mathrm{D}_{\mathrm{k}}=96$$, then $$n$$ is equal to _____________.
Let $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ a & 0 & 3 \\ 1 & c & 0\end{array}\right]$$, where $$a, c \in \mathbb{R}$$. If $$A^{3}=A$$ and the positive value of $$a$$ belongs to the interval $$(n-1, n]$$, where $$n \in \mathbb{N}$$, then $$n$$ is equal to ___________.
Let $$\mathrm{S}$$ be the set of values of $$\lambda$$, for which the system of equations
$$6 \lambda x-3 y+3 z=4 \lambda^{2}$$,
$$2 x+6 \lambda y+4 z=1$$,
$$3 x+2 y+3 \lambda z=\lambda$$ has no solution. Then $$12 \sum_\limits{i \in S}|\lambda|$$ is equal to ___________.