1
JEE Main 2021 (Online) 25th July Morning Shift
Numerical
+4
-1
Out of Syllabus
Let $$M = \left\{ {A = \left( {\matrix{ a & b \cr c & d \cr } } \right):a,b,c,d \in \{ \pm 3, \pm 2, \pm 1,0\} } \right\}$$. Define f : M $$\to$$ Z, as f(A) = det(A), for all A$$\in$$M, where z is set of all integers. Then the number of A$$\in$$M such that f(A) = 15 is equal to _____________.
2
JEE Main 2021 (Online) 22th July Evening Shift
Numerical
+4
-1
Let $$A = \left[ {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right]$$. Then the number of 3 $$\times$$ 3 matrices B with entries from the set {1, 2, 3, 4, 5} and satisfying AB = BA is ____________.
3
JEE Main 2021 (Online) 20th July Evening Shift
Numerical
+4
-1
Out of Syllabus
Let $$A = \{ {a_{ij}}\}$$ be a 3 $$\times$$ 3 matrix,

where $${a_{ij}} = \left\{ {\matrix{ {{{( - 1)}^{j - i}}} & {if} & {i < j,} \cr 2 & {if} & {i = j,} \cr {{{( - 1)}^{i + j}}} & {if} & {i > j} \cr } } \right.$$

then $$\det (3Adj(2{A^{ - 1}}))$$ is equal to _____________.
4
JEE Main 2021 (Online) 20th July Morning Shift
Numerical
+4
-1
Let $$A = \left( {\matrix{ 1 & { - 1} & 0 \cr 0 & 1 & { - 1} \cr 0 & 0 & 1 \cr } } \right)$$ and B = 7A20 $$-$$ 20A7 + 2I, where I is an identity matrix of order 3 $$\times$$ 3. If B = [bij], then b13is equal to _____________.