1
JEE Main 2023 (Online) 11th April Morning Shift
Numerical
+4
-1

Let $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ a & 0 & 3 \\ 1 & c & 0\end{array}\right]$$, where $$a, c \in \mathbb{R}$$. If $$A^{3}=A$$ and the positive value of $$a$$ belongs to the interval $$(n-1, n]$$, where $$n \in \mathbb{N}$$, then $$n$$ is equal to ___________.

2
JEE Main 2023 (Online) 10th April Evening Shift
Numerical
+4
-1

Let $$\mathrm{S}$$ be the set of values of $$\lambda$$, for which the system of equations

$$6 \lambda x-3 y+3 z=4 \lambda^{2}$$,

$$2 x+6 \lambda y+4 z=1$$,

$$3 x+2 y+3 \lambda z=\lambda$$ has no solution. Then $$12 \sum_\limits{i \in S}|\lambda|$$ is equal to ___________.

3
JEE Main 2023 (Online) 31st January Evening Shift
Numerical
+4
-1
Out of Syllabus
Let A be a $n \times n$ matrix such that $|\mathrm{A}|=2$. If the determinant of the matrix $\operatorname{Adj}\left(2 \cdot \operatorname{Adj}\left(2 \mathrm{~A}^{-1}\right)\right) \cdot$ is $2^{84}$, then $\mathrm{n}$ is equal to :
4
JEE Main 2023 (Online) 29th January Evening Shift
Numerical
+4
-1

Let A be a symmetric matrix such that $$\mathrm{|A|=2}$$ and $$\left[ {\matrix{ 2 & 1 \cr 3 & {{3 \over 2}} \cr } } \right]A = \left[ {\matrix{ 1 & 2 \cr \alpha & \beta \cr } } \right]$$. If the sum of the diagonal elements of A is $$s$$, then $$\frac{\beta s}{\alpha^2}$$ is equal to __________.