Let $$A=\left[\begin{array}{cc}1 & -1 \\ 2 & \alpha\end{array}\right]$$ and $$B=\left[\begin{array}{cc}\beta & 1 \\ 1 & 0\end{array}\right], \alpha, \beta \in \mathbf{R}$$. Let $$\alpha_{1}$$ be the value of $$\alpha$$ which satisfies $$(\mathrm{A}+\mathrm{B})^{2}=\mathrm{A}^{2}+\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$$ and $$\alpha_{2}$$ be the value of $$\alpha$$ which satisfies $$(\mathrm{A}+\mathrm{B})^{2}=\mathrm{B}^{2}$$. Then $$\left|\alpha_{1}-\alpha_{2}\right|$$ is equal to ___________.
Consider a matrix $$A=\left[\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \beta+\gamma & \gamma+\alpha & \alpha+\beta\end{array}\right]$$, where $$\alpha, \beta, \gamma$$ are three distinct natural numbers.
If $$\frac{\operatorname{det}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))))}{(\alpha-\beta)^{16}(\beta-\gamma)^{16}(\gamma-\alpha)^{16}}=2^{32} \times 3^{16}$$, then the number of such 3 - tuples $$(\alpha, \beta, \gamma)$$ is ____________.
Let $$S$$ be the set containing all $$3 \times 3$$ matrices with entries from $$\{-1,0,1\}$$. The total number of matrices $$A \in S$$ such that the sum of all the diagonal elements of $$A^{\mathrm{T}} A$$ is 6 is ____________.
The number of matrices $$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$$, where $$a, b, c, d \in\{-1,0,1,2,3, \ldots \ldots, 10\}$$, such that $$A=A^{-1}$$, is ___________.