Let A be a $3 \times 3$ matrix such that $\mathrm{X}^{\mathrm{T}} \mathrm{AX}=\mathrm{O}$ for all nonzero $3 \times 1$ matrices $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. If $\mathrm{A}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ 4 \\ -5\end{array}\right], \mathrm{A}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 4 \\ -8\end{array}\right]$, and $\operatorname{det}(\operatorname{adj}(2(\mathrm{~A}+\mathrm{I})))=2^\alpha 3^\beta 5^\gamma, \alpha, \beta, \gamma \in N$, then $\alpha^2+\beta^2+\gamma^2$ is
Let $A$ be a square matrix of order 3 such that $\operatorname{det}(A)=-2$ and $\operatorname{det}(3 \operatorname{adj}(-6 \operatorname{adj}(3 A)))=2^{m+n} \cdot 3^{m n}, m>n$. Then $4 m+2 n$ is equal to __________.
Consider the matrices : $$A=\left[\begin{array}{cc}2 & -5 \\ 3 & m\end{array}\right], B=\left[\begin{array}{l}20 \\ m\end{array}\right]$$ and $$X=\left[\begin{array}{l}x \\ y\end{array}\right]$$. Let the set of all $$m$$, for which the system of equations $$A X=B$$ has a negative solution (i.e., $$x<0$$ and $$y<0$$), be the interval $$(a, b)$$. Then $$8 \int_\limits a^b|A| d m$$ is equal to _________.
Let $$A$$ be a non-singular matrix of order 3. If $$\operatorname{det}(3 \operatorname{adj}(2 \operatorname{adj}((\operatorname{det} A) A)))=3^{-13} \cdot 2^{-10}$$ and $$\operatorname{det}(3\operatorname{adj}(2 \mathrm{A}))=2^{\mathrm{m}} \cdot 3^{\mathrm{n}}$$, then $$|3 \mathrm{~m}+2 \mathrm{n}|$$ is equal to _________.