Let $I$ be the identity matrix of order $3 \times 3$ and for the matrix $A=\left[\begin{array}{ccc}\lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2\end{array}\right],|A|=-1$. Let $B$ be the inverse of the matrix $\operatorname{adj}\left(\operatorname{Aadj}\left(A^2\right)\right)$. Then $|(\lambda \mathrm{B}+\mathrm{I})|$ is equal to______
Let $S=\left\{m \in \mathbf{Z}: A^{m^2}+A^m=3 I-A^{-6}\right\}$, where $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right]$. Then $n(S)$ is equal to __________.
Let M denote the set of all real matrices of order $3 \times 3$ and let $\mathrm{S}=\{-3,-2,-1,1,2\}$. Let
$$\begin{aligned} & \mathrm{S}_1=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: \mathrm{A}=\mathrm{A}^{\mathrm{T}} \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\}, \\ & \mathrm{S}_2=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: \mathrm{A}=-\mathrm{A}^{\mathrm{T}} \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\}, \\ & \mathrm{S}_3=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: a_{11}+a_{22}+a_{33}=0 \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\} . \end{aligned}$$
If $n\left(S_1 \cup S_2 \cup S_3\right)=125 \alpha$, then $\alpha$ equls __________.
Let A be a $3 \times 3$ matrix such that $\mathrm{X}^{\mathrm{T}} \mathrm{AX}=\mathrm{O}$ for all nonzero $3 \times 1$ matrices $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. If $\mathrm{A}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ 4 \\ -5\end{array}\right], \mathrm{A}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 4 \\ -8\end{array}\right]$, and $\operatorname{det}(\operatorname{adj}(2(\mathrm{~A}+\mathrm{I})))=2^\alpha 3^\beta 5^\gamma, \alpha, \beta, \gamma \in N$, then $\alpha^2+\beta^2+\gamma^2$ is