NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Main 2021 (Online) 27th August Morning Shift

Numerical
If the system of linear equations

2x + y $$-$$ z = 3

x $$-$$ y $$-$$ z = $$\alpha$$

3x + 3y + $$\beta$$z = 3

has infinitely many solution, then $$\alpha$$ + $$\beta$$ $$-$$ $$\alpha$$$$\beta$$ is equal to _____________.
Your Input ________

Answer

Correct Answer is 5

Explanation

2 $$\times$$ (i) $$-$$ (ii) $$-$$ (iii) gives :

$$-$$ (1 + $$\beta$$)z = 3 $$-$$ $$\alpha$$

For infinitely many solution

$$\beta$$ + 1 = 0 = 3 $$-$$ $$\alpha$$ $$\Rightarrow$$ ($$\alpha$$, $$\beta$$) = (3, $$-$$1)

Hence, $$\alpha$$ + $$\beta$$ $$-$$ $$\alpha$$$$\beta$$ = 5
2

JEE Main 2021 (Online) 26th August Evening Shift

Numerical
Let A be a 3 $$\times$$ 3 real matrix. If det(2Adj(2 Adj(Adj(2A)))) = 241, then the value of det(A2) equal __________.
Your Input ________

Answer

Correct Answer is 4

Explanation

adj (2A) = 22 adjA

$$\Rightarrow$$ adj(adj (2A)) = adj(4 adjA) = 16 adj (adj A)

= 16 | A | A

$$\Rightarrow$$ adj (32 | A | A) = (32 | A |)2 adj A

12(32| A |)2 |adj A | = 23 (32 | A |)6 | adj A |

23 . 230 | A |6 . | A |2 = 241

| A |8 = 28 $$\Rightarrow$$ | A | = $$\pm$$2

| A |2 = | A |2 = 4
3

JEE Main 2021 (Online) 27th July Morning Shift

Numerical
Let $$f(x) = \left| {\matrix{ {{{\sin }^2}x} & { - 2 + {{\cos }^2}x} & {\cos 2x} \cr {2 + {{\sin }^2}x} & {{{\cos }^2}x} & {\cos 2x} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {1 + \cos 2x} \cr } } \right|,x \in [0,\pi ]$$. Then the maximum value of f(x) is equal to ______________.
Your Input ________

Answer

Correct Answer is 6

Explanation

$$\left| {\matrix{ { - 2} & { - 2} & 0 \cr 2 & 0 & { - 1} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {1 + \cos 2x} \cr } } \right|\left( \matrix{ {R_1} \to {R_1} - {R_2} \hfill \cr \& \,{R_2} \to {R_2} - {R_3} \hfill \cr} \right)$$

= $$ - 2({\cos ^2}x) + 2(2 + 2\cos 2x + {\sin ^2}x)$$

= $$4 + 4\cos 2x - 2({\cos ^2}x - {\sin ^2}x)$$

$$ \therefore $$ $$f(x) = 4 + \underbrace {2\cos 2x}_{\max = 1}$$

$$ \Rightarrow $$ $$f{(x)_{\max }} = 4 + 2 = 6$$
4

JEE Main 2021 (Online) 27th July Morning Shift

Numerical
For real numbers $$\alpha$$ and $$\beta$$, consider the following system of linear equations :

x + y $$-$$ z = 2, x + 2y + $$\alpha$$z = 1, 2x $$-$$ y + z = $$\beta$$. If the system has infinite solutions, then $$\alpha$$ + $$\beta$$ is equal to ______________.
Your Input ________

Answer

Correct Answer is 5

Explanation

For infinite solutions

$$\Delta$$ = $$\Delta$$1 = $$\Delta$$2 = $$\Delta$$3 = 0

$$\Delta$$ = $$\left| {\matrix{ 1 & 1 & { - 1} \cr 1 & 2 & \alpha \cr 2 & { - 1} & 1 \cr } } \right| = 0$$

$$\Delta = \left| {\matrix{ 3 & 0 & 0 \cr 1 & 2 & \alpha \cr 2 & { - 1} & 1 \cr } } \right| = 0$$

$$\Delta$$ = 3(2 + $$\alpha$$) = 0

$$\Rightarrow$$ $$\alpha$$ = $$-$$2

$${\Delta _2} = \left| {\matrix{ 1 & 2 & { - 1} \cr 1 & 1 & { - 2} \cr 2 & \beta & 1 \cr } } \right| = 0$$

1(1 + 2$$\beta$$) $$-$$2(1 + 4) $$-$$ ($$\beta$$ $$-$$ 2) = 0

$$\beta$$ $$-$$ 7 = 0

$$\beta$$ = 7

$$\therefore$$ $$\alpha$$ + $$\beta$$ = 5

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12