1
JEE Main 2021 (Online) 25th February Morning Shift
Numerical
+4
-1
Change Language
If $$A = \left[ {\matrix{ 0 & { - \tan \left( {{\theta \over 2}} \right)} \cr {\tan \left( {{\theta \over 2}} \right)} & 0 \cr } } \right]$$ and
$$({I_2} + A){({I_2} - A)^{ - 1}} = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$, then $$13({a^2} + {b^2})$$ is equal to
Your input ____
2
JEE Main 2021 (Online) 25th February Morning Shift
Numerical
+4
-1
Out of Syllabus
Change Language
Let $$A = \left[ {\matrix{ x & y & z \cr y & z & x \cr z & x & y \cr } } \right]$$, where x, y and z are real numbers such that x + y + z > 0 and xyz = 2. If $${A^2} = {I_3}$$, then the value of $${x^3} + {y^3} + {z^3}$$ is ____________.
Your input ____
3
JEE Main 2021 (Online) 25th February Morning Shift
Numerical
+4
-1
Change Language
If the system of equations

kx + y + 2z = 1

3x $$-$$ y $$-$$ 2z = 2

$$-$$2x $$-$$2y $$-$$4z = 3

has infinitely many solutions, then k is equal to __________.
Your input ____
4
JEE Main 2021 (Online) 24th February Morning Shift
Numerical
+4
-1
Change Language
Let P = $$\left[ {\matrix{ 3 & { - 1} & { - 2} \cr 2 & 0 & \alpha \cr 3 & { - 5} & 0 \cr } } \right]$$, where $$\alpha $$ $$ \in $$ R. Suppose Q = [ qij] is a matrix satisfying PQ = kl3 for some non-zero k $$ \in $$ R.
If q23 = $$ - {k \over 8}$$ and |Q| = $${{{k^2}} \over 2}$$, then a2 + k2 is equal to ______.
Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12