Let $$A = \left( {\matrix{
{1 + i} & 1 \cr
{ - i} & 0 \cr
} } \right)$$ where $$i = \sqrt { - 1} $$. Then, the number of elements in the set { n $$\in$$ {1, 2, ......, 100} : A^{n} = A } is ____________.

Let A be a matrix of order 2 $$\times$$ 2, whose entries are from the set {0, 1, 2, 3, 4, 5}. If the sum of all the entries of A is a prime number p, 2 < p < 8, then the number of such matrices A is ___________.

The positive value of the determinant of the matrix A, whose

Adj(Adj(A)) = $$\left( {\matrix{ {14} & {28} & { - 14} \cr { - 14} & {14} & {28} \cr {28} & { - 14} & {14} \cr } } \right)$$, is _____________.

Let $$X = \left[ {\matrix{
0 & 1 & 0 \cr
0 & 0 & 1 \cr
0 & 0 & 0 \cr
} } \right],\,Y = \alpha I + \beta X + \gamma {X^2}$$ and $$Z = {\alpha ^2}I - \alpha \beta X + ({\beta ^2} - \alpha \gamma ){X^2}$$, $$\alpha$$, $$\beta$$, $$\gamma$$ $$\in$$ R. If $${Y^{ - 1}} = \left[ {\matrix{
{{1 \over 5}} & {{{ - 2} \over 5}} & {{1 \over 5}} \cr
0 & {{1 \over 5}} & {{{ - 2} \over 5}} \cr
0 & 0 & {{1 \over 5}} \cr
} } \right]$$, then ($$\alpha$$ $$-$$ $$\beta$$ + $$\gamma$$)^{2} is equal to ____________.