Three rotten apples are mixed accidently with seven good apples and four apples are drawn one by one without replacement. Let the random variable X denote the number of rotten apples. If $$\mu$$ and $$\sigma^2$$ represent mean and variance of X, respectively, then $$10(\mu^2+\sigma^2)$$ is equal to :
The mean and variance of the marks obtained by the students in a test are 10 and 4 respectively. Later, the marks of one of the students is increased from 8 to 12. If the new mean of the marks is 10.2, then their new variance is equal to :
Let the six numbers $$\mathrm{a_1,a_2,a_3,a_4,a_5,a_6}$$, be in A.P. and $$\mathrm{a_1+a_3=10}$$. If the mean of these six numbers is $$\frac{19}{2}$$ and their variance is $$\sigma^2$$, then 8$$\sigma^2$$ is equal to :