1
AIEEE 2002
+4
-1
If the chord y = mx + 1 of the circle $${x^2}\, + \,{y^2} = 1$$ subtends an angle of measure $${45^ \circ }$$ at the major segment of the circle then value of m is :
A
$$2\, \pm \,\sqrt 2 \,\,$$
B
$$- \,2\, \pm \,\sqrt 2 \,$$
C
$$- 1\, \pm \,\sqrt 2 \,\,$$
D
none of these
2
AIEEE 2002
+4
-1
Out of Syllabus
The centre of the circle passing through (0, 0) and (1, 0) and touching the circle $${x^2}\, + \,{y^2} = 9$$ is :
A
$$\left( {{1 \over 2},\,{1 \over 2}} \right)$$
B
$$\left( {{1 \over 2},\, - \,\sqrt 2 } \right)$$
C
$$\left( {{3 \over 2},\,{1 \over 2}} \right)$$
D
$$\left( {{1 \over 2},\,{3 \over 2}} \right)$$
3
AIEEE 2002
+4
-1
The equation of a circle with origin as a center and passing through an equilateral triangle whose median is of length $$3$$$$a$$ is :
A
$${x^2}\, + \,{y^2} = 9{a^2}$$
B
$${x^2}\, + \,{y^2} = 16{a^2}$$
C
$${x^2}\, + \,{y^2} = 4{a^2}$$
D
$${x^2}\, + \,{y^2} = {a^2}$$
4
AIEEE 2002
+4
-1
Out of Syllabus
The centres of a set of circles, each of radius 3, lie on the circle $${x^2}\, + \,{y^2} = 25$$. The locus of any point in the set is :
A
$$4\, \le \,\,{x^2}\, + \,{y^2}\, \le \,\,64$$
B
$${x^2}\, + \,{y^2}\, \le \,\,25$$
C
$${x^2}\, + \,{y^2}\, \ge \,\,25$$
D
$$3\, \le \,\,{x^2}\, + \,{y^2}\, \le \,\,9$$
EXAM MAP
Medical
NEET