1
JEE Main 2023 (Online) 13th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let the centre of a circle C be $$(\alpha, \beta)$$ and its radius $$r < 8$$. Let $$3 x+4 y=24$$ and $$3 x-4 y=32$$ be two tangents and $$4 x+3 y=1$$ be a normal to C. Then $$(\alpha-\beta+r)$$ is equal to :

A
7
B
9
C
5
D
6
2
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let A be the point $$(1,2)$$ and B be any point on the curve $$x^{2}+y^{2}=16$$. If the centre of the locus of the point P, which divides the line segment $$\mathrm{AB}$$ in the ratio $$3: 2$$ is the point C$$(\alpha, \beta)$$, then the length of the line segment $$\mathrm{AC}$$ is :

A
$$\frac{3 \sqrt{5}}{5}$$
B
$$\frac{6 \sqrt{5}}{5}$$
C
$$\frac{2 \sqrt{5}}{5}$$
D
$$\frac{4 \sqrt{5}}{5}$$
3
JEE Main 2023 (Online) 10th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

A line segment AB of length $$\lambda$$ moves such that the points A and B remain on the periphery of a circle of radius $$\lambda$$. Then the locus of the point, that divides the line segment AB in the ratio 2 : 3, is a circle of radius :

A
$${2 \over 3}\lambda$$
B
$${3 \over 5}\lambda$$
C
$${{\sqrt {19} } \over 7}\lambda$$
D
$${{\sqrt {19} } \over 5}\lambda$$
4
JEE Main 2023 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let O be the origin and OP and OQ be the tangents to the circle $$x^2+y^2-6x+4y+8=0$$ at the points P and Q on it. If the circumcircle of the triangle OPQ passes through the point $$\left( {\alpha ,{1 \over 2}} \right)$$, then a value of $$\alpha$$ is :

A
1
B
$$-\frac{1}{2}$$
C
$$\frac{5}{2}$$
D
$$\frac{3}{2}$$
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
© ExamGOAL 2023