1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If a circle passes through the point (a, b) and cuts the circle $${x^2}\, + \,{y^2} = 4$$ orthogonally, then the locus of its centre is :
A
$$2ax\, - 2by\, - ({a^2}\, + \,{b^2} + 4) = 0$$
B
$$2ax\, + 2by\, - ({a^2}\, + \,{b^2} + 4) = 0$$
C
$$2ax\, - 2by\, + ({a^2}\, + \,{b^2} + 4) = 0$$
D
$$2ax\, + 2by\, + ({a^2}\, + \,{b^2} + 4) = 0$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Intercept on the line y = x by the circle $${x^2}\, + \,{y^2} - 2x = 0$$ is AB. Equation of the circle on AB as a diameter is :
A
$$\,{x^2}\, + \,{y^2} + \,x\, - \,y\,\, = 0$$
B
$$\,{x^2}\, + \,{y^2} - \,x\, + \,y\,\, = 0$$
C
$$\,{x^2}\, + \,{y^2} + \,x\, + \,y\,\, = 0$$
D
$$\,{x^2}\, + \,{y^2} - \,x\, - \,y\,\, = 0$$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If the two circles $${(x - 1)^2}\, + \,{(y - 3)^2} = \,{r^2}$$ and $$\,{x^2}\, + \,{y^2} - \,8x\, + \,2y\, + \,\,8\,\, = 0$$ intersect in two distinct point, then :
A
$$r > 2$$
B
$$2 < r < 8$$
C
$$r < 2$$
D
$$r = 2.$$
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle having area as 154 sq. units. Then the equation of the circle is :
A
$${x^2}\, + \,{y^2} - \,2x\, + \,2y\,\, = \,62$$
B
$${x^2}\, + \,{y^2} + \,2x\, - \,2y\,\, = \,62$$
C
$${x^2}\, + \,{y^2} + \,2x\, - \,2y\,\, = \,47$$
D
$${x^2}\, + \,{y^2} - \,2x\, + \,2y\,\, = \,47$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12