If the circle $$x^{2}+y^{2}-2 g x+6 y-19 c=0, g, c \in \mathbb{R}$$ passes through the point $$(6,1)$$ and its centre lies on the line $$x-2 c y=8$$, then the length of intercept made by the circle on $$x$$-axis is :
Let the abscissae of the two points $$P$$ and $$Q$$ on a circle be the roots of $$x^{2}-4 x-6=0$$ and the ordinates of $$\mathrm{P}$$ and $$\mathrm{Q}$$ be the roots of $$y^{2}+2 y-7=0$$. If $$\mathrm{PQ}$$ is a diameter of the circle $$x^{2}+y^{2}+2 a x+2 b y+c=0$$, then the value of $$(a+b-c)$$ is _____________.
Consider three circles:
$${C_1}:{x^2} + {y^2} = {r^2}$$
$${C_2}:{(x - 1)^2} + {(y - 1)^2} = {r^2}$$
$${C_3}:{(x - 2)^2} + {(y - 1)^2} = {r^2}$$
If a line L : y = mx + c be a common tangent to C1, C2 and C3 such that C1 and C3 lie on one side of line L while C2 lies on other side, then the value of $$20({r^2} + c)$$ is equal to :
Let a triangle ABC be inscribed in the circle $${x^2} - \sqrt 2 (x + y) + {y^2} = 0$$ such that $$\angle BAC = {\pi \over 2}$$. If the length of side AB is $$\sqrt 2 $$, then the area of the $$\Delta$$ABC is equal to :