1
AIEEE 2003
+4
-1
Out of Syllabus
If the two circles $${(x - 1)^2}\, + \,{(y - 3)^2} = \,{r^2}$$ and $$\,{x^2}\, + \,{y^2} - \,8x\, + \,2y\, + \,\,8\,\, = 0$$ intersect in two distinct point, then :
A
$$r > 2$$
B
$$2 < r < 8$$
C
$$r < 2$$
D
$$r = 2.$$
2
AIEEE 2003
+4
-1
The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle having area as 154 sq. units. Then the equation of the circle is :
A
$${x^2}\, + \,{y^2} - \,2x\, + \,2y\,\, = \,62$$
B
$${x^2}\, + \,{y^2} + \,2x\, - \,2y\,\, = \,62$$
C
$${x^2}\, + \,{y^2} + \,2x\, - \,2y\,\, = \,47$$
D
$${x^2}\, + \,{y^2} - \,2x\, + \,2y\,\, = \,47$$
3
AIEEE 2002
+4
-1
If the chord y = mx + 1 of the circle $${x^2}\, + \,{y^2} = 1$$ subtends an angle of measure $${45^ \circ }$$ at the major segment of the circle then value of m is :
A
$$2\, \pm \,\sqrt 2 \,\,$$
B
$$- \,2\, \pm \,\sqrt 2 \,$$
C
$$- 1\, \pm \,\sqrt 2 \,\,$$
D
none of these
4
AIEEE 2002
+4
-1
Out of Syllabus
The centre of the circle passing through (0, 0) and (1, 0) and touching the circle $${x^2}\, + \,{y^2} = 9$$ is :
A
$$\left( {{1 \over 2},\,{1 \over 2}} \right)$$
B
$$\left( {{1 \over 2},\, - \,\sqrt 2 } \right)$$
C
$$\left( {{3 \over 2},\,{1 \over 2}} \right)$$
D
$$\left( {{1 \over 2},\,{3 \over 2}} \right)$$
EXAM MAP
Medical
NEET