1
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the circles $$C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$$ and $$C_2:(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2$$ touch each other externally at the point $$(6,6)$$. If the point $$(6,6)$$ divides the line segment joining the centres of the circles $$C_1$$ and $$C_2$$ internally in the ratio $$2: 1$$, then $$(\alpha+\beta)+4\left(r_1^2+r_2^2\right)$$ equals

A
130
B
110
C
145
D
125
2
JEE Main 2024 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\mathrm{P}(6,1)$$ be the orthocentre of the triangle whose vertices are $$\mathrm{A}(5,-2), \mathrm{B}(8,3)$$ and $$\mathrm{C}(\mathrm{h}, \mathrm{k})$$, then the point $$\mathrm{C}$$ lies on the circle :

A
$$x^2+y^2-74=0$$
B
$$x^2+y^2-65=0$$
C
$$x^2+y^2-61=0$$
D
$$x^2+y^2-52=0$$
3
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A circle is inscribed in an equilateral triangle of side of length 12. If the area and perimeter of any square inscribed in this circle are $$m$$ and $$n$$, respectively, then $$m+n^2$$ is equal to

A
408
B
414
C
312
D
396
4
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the circle $$C_1: x^2+y^2-2(x+y)+1=0$$ and $$\mathrm{C_2}$$ be a circle having centre at $$(-1,0)$$ and radius 2 . If the line of the common chord of $$\mathrm{C}_1$$ and $$\mathrm{C}_2$$ intersects the $$\mathrm{y}$$-axis at the point $$\mathrm{P}$$, then the square of the distance of P from the centre of $$\mathrm{C_1}$$ is:

A
4
B
6
C
2
D
1
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12