1
JEE Main 2021 (Online) 17th March Evening Shift
Numerical
+4
-1
Change Language
If 1, log10(4x $$-$$ 2) and log10$$\left( {{4^x} + {{18} \over 5}} \right)$$ are in arithmetic progression for a real number x, then the value of the determinant $$\left| {\matrix{ {2\left( {x - {1 \over 2}} \right)} & {x - 1} & {{x^2}} \cr 1 & 0 & x \cr x & 1 & 0 \cr } } \right|$$ is equal to :
Your input ____
2
JEE Main 2021 (Online) 17th March Morning Shift
Numerical
+4
-1
Out of Syllabus
Change Language
If $$A = \left[ {\matrix{ 2 & 3 \cr 0 & { - 1} \cr } } \right]$$, then the value of det(A4) + det(A10 $$-$$ (Adj(2A))10) is equal to _____________.
Your input ____
3
JEE Main 2021 (Online) 16th March Evening Shift
Numerical
+4
-1
Change Language
Let $$A = \left[ {\matrix{ {{a_1}} \cr {{a_2}} \cr } } \right]$$ and $$B = \left[ {\matrix{ {{b_1}} \cr {{b_2}} \cr } } \right]$$ be two 2 $$\times$$ 1 matrices with real entries such that A = XB, where

$$X = {1 \over {\sqrt 3 }}\left[ {\matrix{ 1 & { - 1} \cr 1 & k \cr } } \right]$$, and k$$\in$$R.

If $$a_1^2$$ + $$a_2^2$$ = $${2 \over 3}$$(b$$_1^2$$ + b$$_2^2$$) and (k2 + 1) b$$_2^2$$ $$\ne$$ $$-$$2b1b2, then the value of k is __________.
Your input ____
4
JEE Main 2021 (Online) 16th March Morning Shift
Numerical
+4
-1
Out of Syllabus
Change Language
Let $$P = \left[ {\matrix{ { - 30} & {20} & {56} \cr {90} & {140} & {112} \cr {120} & {60} & {14} \cr } } \right]$$ and

$$A = \left[ {\matrix{ 2 & 7 & {{\omega ^2}} \cr { - 1} & { - \omega } & 1 \cr 0 & { - \omega } & { - \omega + 1} \cr } } \right]$$ where

$$\omega = {{ - 1 + i\sqrt 3 } \over 2}$$, and I3 be the identity matrix of order 3. If the
determinant of the matrix (P$$-$$1AP$$-$$I3)2 is $$\alpha$$$$\omega$$2, then the value of $$\alpha$$ is equal to ______________.
Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12