1
JEE Main 2025 (Online) 4th April Evening Shift
Numerical
+4
-1

$x \mathrm{mg}$ of $\mathrm{Mg}(\mathrm{OH})_2($ molar mass $=58)$ is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K . The value of $x$ is ________ mg. (Nearest integer)

(Given : $\mathrm{Mg}(\mathrm{OH})_2$ is assumed to dissociate completely in $\mathrm{H}_2 \mathrm{O}$ ]

Your input ____
2
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let $\mathrm{A}=\{-3,-2,-1,0,1,2,3\}$ and R be a relation on A defined by $x \mathrm{R} y$ if and only if $2 x-y \in\{0,1\}$. Let $l$ be the number of elements in $R$. Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l+\mathrm{m}+\mathrm{n}$ is equal to:

A
17
B
18
C
15
D
16
3
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let the domains of the functions $f(x)=\log _4 \log _3 \log _7\left(8-\log _2\left(x^2+4 x+5\right)\right)$ and $\mathrm{g}(x)=\sin ^{-1}\left(\frac{7 x+10}{x-2}\right)$ be $(\alpha, \beta)$ and $[\gamma, \delta]$, respectively. Then $\alpha^2+\beta^2+\gamma^2+\delta^2$ is equal to :

A
15
B
13
C
16
D
14
4
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let the mean and the standard deviation of the observation $2,3,3,4,5,7, a, b$ be 4 and $\sqrt{2}$ respectively. Then the mean deviation about the mode of these observations is :

A
$\frac{1}{2}$
B
$\frac{3}{4}$
C
1
D
2
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12