1
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let the values of p , for which the shortest distance between the lines $\frac{x+1}{3}=\frac{y}{4}=\frac{z}{5}$ and $\overrightarrow{\mathrm{r}}=(\mathrm{p} \hat{i}+2 \hat{j}+\hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$ is $\frac{1}{\sqrt{6}}$, be $\mathrm{a}, \mathrm{b},(\mathrm{a}<\mathrm{b})$. Then the length of the latus rectum of the ellipse $\frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1$ is :

A
$\frac{3}{2}$
B
9
C
18
D
$\frac{2}{3}$
2
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let $f$ be a differentiable function on $\mathbf{R}$ such that $f(2)=1, f^{\prime}(2)=4$. Let $\lim \limits_{x \rightarrow 0}(f(2+x))^{3 / x}=\mathrm{e}^\alpha$. Then the number of times the curve $y=4 x^3-4 x^2-4(\alpha-7) x-\alpha$ meets $x$-axis is :

A
3
B
1
C
2
D
0
3
JEE Main 2025 (Online) 4th April Evening Shift
Numerical
+4
-1

If $\int \frac{\left(\sqrt{1+x^2}+x\right)^{10}}{\left(\sqrt{1+x^2}-x\right)^9} \mathrm{~d} x=\frac{1}{\mathrm{~m}}\left(\left(\sqrt{1+x^2}+x\right)^{\mathrm{n}}\left(\mathrm{n} \sqrt{1+x^2}-x\right)\right)+\mathrm{C}$ where C is the constant of integration and $\mathrm{m}, \mathrm{n} \in \mathbf{N}$, then $\mathrm{m}+\mathrm{n}$ is equal to _________ .

Your input ____
4
JEE Main 2025 (Online) 4th April Evening Shift
Numerical
+4
-1

A card from a pack of 52 cards is lost. From the remaining 51 cards, n cards are drawn and are found to be spades. If the probability of the lost card to be a spade is $\frac{11}{50}$, then n is equal to ________ .

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12