Let the sum of the focal distances of the point $\mathrm{P}(4,3)$ on the hyperbola $\mathrm{H}: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ be $8 \sqrt{\frac{5}{3}}$. If for H , the length of the latus rectum is $l$ and the product of the focal distances of the point P is m , then $9 l^2+6 \mathrm{~m}$ is equal to :
Let $\mathrm{a}>0$. If the function $f(x)=6 x^3-45 \mathrm{a} x^2+108 \mathrm{a}^2 x+1$ attains its local maximum and minimum values at the points $x_1$ and $x_2$ respectively such that $x_1 x_2=54$, then $\mathrm{a}+x_1+x_2$ is equal to :
Let the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfy $A^n=A^{n-2}+A^2-I$ for $n \geqslant 3$. Then the sum of all the elements of $\mathrm{A}^{50}$ is :
If a curve $y=y(x)$ passes through the point $\left(1, \frac{\pi}{2}\right)$ and satisfies the differential equation $\left(7 x^4 \cot y-\mathrm{e}^x \operatorname{cosec} y\right) \frac{\mathrm{d} x}{\mathrm{~d} y}=x^5, x \geq 1$, then at $x=2$, the value of $\cos y$ is :