If $1^2 \cdot\left({ }^{15} C_1\right)+2^2 \cdot\left({ }^{15} C_2\right)+3^2 \cdot\left({ }^{15} C_3\right)+\ldots+15^2 \cdot\left({ }^{15} C_{15}\right)=2^m \cdot 3^n \cdot 5^k$, where $m, n, k \in \mathbf{N}$, then $\mathrm{m}+\mathrm{n}+\mathrm{k}$ is equal to :
Let A be the point of intersection of the lines $\mathrm{L}_1: \frac{x-7}{1}=\frac{y-5}{0}=\frac{z-3}{-1}$ and $\mathrm{L}_2: \frac{x-1}{3}=\frac{y+3}{4}=\frac{z+7}{5}$. Let B and C be the points on the lines $\mathrm{L}_1$ and $\mathrm{L}_2$ respectively such that $A B=A C=\sqrt{15}$. Then the square of the area of the triangle $A B C$ is :
The sum of the infinite series $\cot ^{-1}\left(\frac{7}{4}\right)+\cot ^{-1}\left(\frac{19}{4}\right)+\cot ^{-1}\left(\frac{39}{4}\right)+\cot ^{-1}\left(\frac{67}{4}\right)+\ldots$. is :
The axis of a parabola is the line $y=x$ and its vertex and focus are in the first quadrant at distances $\sqrt{2}$ and $2 \sqrt{2}$ units from the origin, respectively. If the point $(1, k)$ lies on the parabola, then a possible value of k is :