If a curve $y=y(x)$ passes through the point $\left(1, \frac{\pi}{2}\right)$ and satisfies the differential equation $\left(7 x^4 \cot y-\mathrm{e}^x \operatorname{cosec} y\right) \frac{\mathrm{d} x}{\mathrm{~d} y}=x^5, x \geq 1$, then at $x=2$, the value of $\cos y$ is :
If the sum of the first 20 terms of the series $\frac{4 \cdot 1}{4+3 \cdot 1^2+1^4}+\frac{4 \cdot 2}{4+3 \cdot 2^2+2^4}+\frac{4 \cdot 3}{4+3 \cdot 3^2+3^4}+\frac{4 \cdot 4}{4+3 \cdot 4^2+4^4}+\ldots \cdot$ is $\frac{\mathrm{m}}{\mathrm{n}}$, where m and n are coprime, then $\mathrm{m}+\mathrm{n}$ is equal to :
Let for two distinct values of p the lines $y=x+\mathrm{p}$ touch the ellipse $\mathrm{E}: \frac{x^2}{4^2}+\frac{y^2}{3^2}=1$ at the points A and B . Let the line $y=x$ intersect E at the points C and D . Then the area of the quadrilateral $A B C D$ is equal to :
The centre of a circle C is at the centre of the ellipse $\mathrm{E}: \frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$. Let C pass through the foci $F_1$ and $F_2$ of E such that the circle $C$ and the ellipse $E$ intersect at four points. Let P be one of these four points. If the area of the triangle $\mathrm{PF}_1 \mathrm{~F}_2$ is 30 and the length of the major axis of $E$ is 17 , then the distance between the foci of $E$ is :