1
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of the infinite series $\cot ^{-1}\left(\frac{7}{4}\right)+\cot ^{-1}\left(\frac{19}{4}\right)+\cot ^{-1}\left(\frac{39}{4}\right)+\cot ^{-1}\left(\frac{67}{4}\right)+\ldots$. is :

A
$\frac{\pi}{2}+\cot ^{-1}\left(\frac{1}{2}\right)$
B
$\frac{\pi}{2}-\cot ^{-1}\left(\frac{1}{2}\right)$
C
$\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{2}\right)$
D
$\frac{\pi}{2}+\tan ^{-1}\left(\frac{1}{2}\right)$
2
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The axis of a parabola is the line $y=x$ and its vertex and focus are in the first quadrant at distances $\sqrt{2}$ and $2 \sqrt{2}$ units from the origin, respectively. If the point $(1, k)$ lies on the parabola, then a possible value of k is :

A
8
B
3
C
9
D
4
3
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f(x)+2 f\left(\frac{1}{x}\right)=x^2+5$ and $2 g(x)-3 g\left(\frac{1}{2}\right)=x, x>0$. If $\alpha=\int_1^2 f(x) \mathrm{d} x$, and $\beta=\int_1^2 g(x) \mathrm{d} x$, then the value of $9 \alpha+\beta$ is :

A
0
B
10
C
1
D
11
4
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider two sets A and B, each containing three numbers in A.P. Let the sum and the product of the elements of A be 36 and p respectively and the sum and the product of the elements of B be 36 and $q$ respectively. Let d and D be the common differences of $\mathrm{AP}^{\prime} \mathrm{s}$ in $A$ and $B$ respectively such that $D=d+3, d>0$. If $\frac{p+q}{p-q}=\frac{19}{5}$, then $\mathrm{p}-\mathrm{q}$ is equal to

A
540
B
450
C
600
D
630
JEE Main Papers
2023
2021
EXAM MAP