Let $f$ be a differentiable function on $\mathbf{R}$ such that $f(2)=1, f^{\prime}(2)=4$. Let $\lim \limits_{x \rightarrow 0}(f(2+x))^{3 / x}=\mathrm{e}^\alpha$. Then the number of times the curve $y=4 x^3-4 x^2-4(\alpha-7) x-\alpha$ meets $x$-axis is :
If $\int \frac{\left(\sqrt{1+x^2}+x\right)^{10}}{\left(\sqrt{1+x^2}-x\right)^9} \mathrm{~d} x=\frac{1}{\mathrm{~m}}\left(\left(\sqrt{1+x^2}+x\right)^{\mathrm{n}}\left(\mathrm{n} \sqrt{1+x^2}-x\right)\right)+\mathrm{C}$ where C is the constant of integration and $\mathrm{m}, \mathrm{n} \in \mathbf{N}$, then $\mathrm{m}+\mathrm{n}$ is equal to _________ .
A card from a pack of 52 cards is lost. From the remaining 51 cards, n cards are drawn and are found to be spades. If the probability of the lost card to be a spade is $\frac{11}{50}$, then n is equal to ________ .
Let the three sides of a triangle ABC be given by the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$. Let $G$ be the centroid of the triangle $A B C$. Then $6\left(|\overrightarrow{\mathrm{AG}}|^2+|\overrightarrow{\mathrm{BG}}|^2+|\overrightarrow{\mathrm{CG}}|^2\right)$ is equal to __________.