Let the three sides of a triangle ABC be given by the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$. Let $G$ be the centroid of the triangle $A B C$. Then $6\left(|\overrightarrow{\mathrm{AG}}|^2+|\overrightarrow{\mathrm{BG}}|^2+|\overrightarrow{\mathrm{CG}}|^2\right)$ is equal to __________.
If $\alpha$ is a root of the equation $x^2+x+1=0$ and $\sum_\limits{\mathrm{k}=1}^{\mathrm{n}}\left(\alpha^{\mathrm{k}}+\frac{1}{\alpha^{\mathrm{k}}}\right)^2=20$, then n is equal to _________.
Let m and $\mathrm{n},(\mathrm{m}<\mathrm{n})$, be two 2-digit numbers. Then the total numbers of pairs $(\mathrm{m}, \mathrm{n})$, such that $\operatorname{gcd}(m, n)=6$, is __________ .
A finite size object is placed normal to the principal axis at a distance of 30 cm from a convex mirror of focal length 30 cm . A plane mirror is now placed in such a way that the image produced by both the mirrors coincide with each other. The distance between the two mirrors is :