A line passing through the point $\mathrm{A}(-2,0)$, touches the parabola $\mathrm{P}: y^2=x-2$ at the point $B$ in the first quadrant. The area, of the region bounded by the line $A B$, parabola $P$ and the $x$-axis, is :
Let the product of $\omega_1=(8+i) \sin \theta+(7+4 i) \cos \theta$ and $\omega_2=(1+8 i) \sin \theta+(4+7 i) \cos \theta$ be $\alpha+i \beta$, $i=\sqrt{-1}$. Let p and q be the maximum and the minimum values of $\alpha+\beta$ respectively. Then $\mathrm{p}+\mathrm{q}$ is equal to :
If $1^2 \cdot\left({ }^{15} C_1\right)+2^2 \cdot\left({ }^{15} C_2\right)+3^2 \cdot\left({ }^{15} C_3\right)+\ldots+15^2 \cdot\left({ }^{15} C_{15}\right)=2^m \cdot 3^n \cdot 5^k$, where $m, n, k \in \mathbf{N}$, then $\mathrm{m}+\mathrm{n}+\mathrm{k}$ is equal to :
Let A be the point of intersection of the lines $\mathrm{L}_1: \frac{x-7}{1}=\frac{y-5}{0}=\frac{z-3}{-1}$ and $\mathrm{L}_2: \frac{x-1}{3}=\frac{y+3}{4}=\frac{z+7}{5}$. Let B and C be the points on the lines $\mathrm{L}_1$ and $\mathrm{L}_2$ respectively such that $A B=A C=\sqrt{15}$. Then the square of the area of the triangle $A B C$ is :