1
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
The area of the region described by
$$A = \left\{ {\left( {x,y} \right):{x^2} + {y^2} \le 1} \right.$$ and $$\left. {{y^2} \le 1 - x} \right\}$$ is :
A
$${\pi \over 2} - {2 \over 3}$$
B
$${\pi \over 2} + {2 \over 3}$$
C
$${\pi \over 2} + {4 \over 3}$$
D
$${\pi \over 2} - {4 \over 3}$$
2
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
The integral $$\int\limits_0^\pi {\sqrt {1 + 4{{\sin }^2}{x \over 2} - 4\sin {x \over 2}{\mkern 1mu} } } dx$$ equals:
A
$$4\sqrt 3 - 4$$
B
$$4\sqrt 3 - 4 - {\pi \over 3}$$
C
$$\pi - 4$$
D
$${{2\pi } \over 3} - 4 - 4\sqrt 3 $$
3
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
Statement-1 : The value of the integral
$$\int\limits_{\pi /6}^{\pi /3} {{{dx} \over {1 + \sqrt {\tan \,x} }}} $$ is equal to $$\pi /6$$

Statement-2 : $$\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx.$$

A
Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
B
Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
C
Statement- 1 is true; Statement-2 is False.
D
Statement-1 is false; Statement-2 is true.
4
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
The area (in square units) bounded by the curves $$y = \sqrt {x,} 2y - x + 3 = 0,$$ $$x$$-axis, and lying in the first quadrant is :
A
$$9$$
B
$$36$$
C
$$18$$
D
$${{27} \over 4}$$
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET