The area of the region given by
$$A=\left\{(x, y): x^{2} \leq y \leq \min \{x+2,4-3 x\}\right\}$$ is :
For any real number $$x$$, let $$[x]$$ denote the largest integer less than equal to $$x$$. Let $$f$$ be a real valued function defined on the interval $$[-10,10]$$ by $$f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even } .\end{array}\right.$$ Then the value of $$\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x \,d x$$ is :
The slope of the tangent to a curve $$C: y=y(x)$$ at any point $$(x, y)$$ on it is $$\frac{2 \mathrm{e}^{2 x}-6 \mathrm{e}^{-x}+9}{2+9 \mathrm{e}^{-2 x}}$$. If $$C$$ passes through the points $$\left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right)$$ and $$\left(\alpha, \frac{1}{2} \mathrm{e}^{2 \alpha}\right)$$, then $$\mathrm{e}^{\alpha}$$ is equal to :
Let the locus of the centre $$(\alpha, \beta), \beta>0$$, of the circle which touches the circle $$x^{2}+(y-1)^{2}=1$$ externally and also touches the $$x$$-axis be $$\mathrm{L}$$. Then the area bounded by $$\mathrm{L}$$ and the line $$y=4$$ is: