1
JEE Main 2020 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Given : $$f(x) = \left\{ {\matrix{ {x\,\,\,\,\,,} & {0 \le x < {1 \over 2}} \cr {{1 \over 2}\,\,\,\,,} & {x = {1 \over 2}} \cr {1 - x\,\,\,,} & {{1 \over 2} < x \le 1} \cr } } \right.$$

and $$g(x) = \left( {x - {1 \over 2}} \right)^2,x \in R$$

Then the area (in sq. units) of the region bounded by the curves, y = ƒ(x) and y = g(x) between the lines, 2x = 1 and 2x = $$\sqrt 3 $$, is :
A
$${1 \over 2} + {{\sqrt 3 } \over 4}$$
B
$${1 \over 2} - {{\sqrt 3 } \over 4}$$
C
$${1 \over 3} + {{\sqrt 3 } \over 4}$$
D
$${{\sqrt 3 } \over 4} - {1 \over 3}$$
2
JEE Main 2020 (Online) 8th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The area (in sq. units) of the region

{(x,y) $$ \in $$ R2 : x2 $$ \le $$ y $$ \le $$ 3 – 2x}, is :
A
$${{34} \over 3}$$
B
$${{29} \over 3}$$
C
$${{31} \over 3}$$
D
$${{32} \over 3}$$
3
JEE Main 2020 (Online) 8th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
For a > 0, let the curves C1 : y2 = ax and C2 : x2 = ay intersect at origin O and a point P. Let the line x = b (0 < b < a) intersect the chord OP and the x-axis at points Q and R, respectively. If the line x = b bisects the area bounded by the curves, C1 and C2, and the area of
$$\Delta $$OQR = $${1 \over 2}$$, then 'a' satisfies the equation :
A
x6 – 12x3 + 4 = 0
B
x6 – 12x3 – 4 = 0
C
x6 + 6x3 – 4 = 0
D
x6 – 6x3 + 4 = 0
4
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The area (in sq. units) of the region
{(x, y) $$ \in $$ R2 | 4x2 $$ \le $$ y $$ \le $$ 8x + 12} is :
A
$${{125} \over 3}$$
B
$${{128} \over 3}$$
C
$${{127} \over 3}$$
D
$${{124} \over 3}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12