1
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that

$f(x)=1-2 x+\int_0^x e^{x-t} f(t) d t$ for all $x \in[0, \infty)$.

Then the area of the region bounded by $y=f(x)$ and the coordinate axes is

A
$\sqrt5$
B
2
C
$\sqrt2$
D
$\frac{1}{2}$
2
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The area of the region $\{(x, y):|x-y| \leq y \leq 4 \sqrt{x}\}$ is
A
$\frac{512}{3}$
B
$\frac{2048}{3}$
C
512
D
$\frac{1024}{3}$
3
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the area enclosed between the curves $|y| = 1 - x^2$ and $x^2 + y^2 = 1$ be $\alpha$. If $9\alpha = \beta \pi + \gamma; \beta, \gamma$ are integers, then the value of $|\beta - \gamma|$ equals:

A

15

B

18

C
33
D

27

4
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the area of the region

$ (x, y) : 2y \leq x^2 + 3,\ y + |x| \leq 3, \ y \geq |x - 1| $ be $ A $. Then $ 6A $ is equal to :

A

14

B

18

C

16

D

12

JEE Main Subjects
EXAM MAP