Javascript is required
1
JEE Main 2021 (Online) 18th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
The area bounded by the curve 4y2 = x2(4 $$-$$ x)(x $$-$$ 2) is equal to :
A
$${\pi \over {16}}$$
B
$${\pi \over {8}}$$
C
$${3\pi \over {2}}$$
D
$${3\pi \over {8}}$$
2
JEE Main 2021 (Online) 18th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Let g(x) = $$\int_0^x {f(t)dt} $$, where f is continuous function in [ 0, 3 ] such that $${1 \over 3}$$ $$ \le $$ f(t) $$ \le $$ 1 for all t$$\in$$ [0, 1] and 0 $$ \le $$ f(t) $$ \le $$ $${1 \over 2}$$ for all t$$\in$$ (1, 3]. The largest possible interval in which g(3) lies is :
A
$$\left[ { - 1, - {1 \over 2}} \right]$$
B
$$\left[ { - {3 \over 2}, - 1} \right]$$
C
[1, 3]
D
$$\left[ {{1 \over 3},2} \right]$$
3
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Let f : R $$ \to $$ R be defined as f(x) = e$$-$$xsinx. If F : [0, 1] $$ \to $$ R is a differentiable function with that F(x) = $$\int_0^x {f(t)dt} $$, then the value of $$\int_0^1 {(F'(x) + f(x)){e^x}dx} $$ lies in the interval
A
$$\left[ {{{331} \over {360}},{{334} \over {360}}} \right]$$
B
$$\left[ {{{330} \over {360}},{{331} \over {360}}} \right]$$
C
$$\left[ {{{335} \over {360}},{{336} \over {360}}} \right]$$
D
$$\left[ {{{327} \over {360}},{{329} \over {360}}} \right]$$
4
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
If the integral

$$\int_0^{10} {{{[\sin 2\pi x]} \over {{e^{x - [x]}}}}} dx = \alpha {e^{ - 1}} + \beta {e^{ - {1 \over 2}}} + \gamma $$, where $$\alpha$$, $$\beta$$, $$\gamma$$ are integers and [x] denotes the greatest integer less than or equal to x, then the value of $$\alpha$$ + $$\beta$$ + $$\gamma$$ is equal to :
A
0
B
10
C
20
D
25
JEE Main Subjects
© 2023 ExamGOAL