1
JEE Main 2016 (Offline)
+4
-1
The area (in sq. units) of the region $$\left\{ {\left( {x,y} \right):{y^2} \ge 2x\,\,\,and\,\,\,{x^2} + {y^2} \le 4x,x \ge 0,y \ge 0} \right\}$$ is :
A
$$\pi - {{4\sqrt 2 } \over 3}$$
B
$${\pi \over 2} - {{2\sqrt 2 } \over 3}$$
C
$$\pi - {4 \over 3}$$
D
$$\pi - {8 \over 3}$$
2
JEE Main 2015 (Offline)
+4
-1
The area (in sq. units) of the region described by

$$\left\{ {\left( {x,y} \right):{y^2} \le 2x} \right.$$ and $$\left. {y \ge 4x - 1} \right\}$$ is :
A
$${{15} \over {64}}$$
B
$${{9} \over {32}}$$
C
$${{7} \over {32}}$$
D
$${{5} \over {64}}$$
3
JEE Main 2014 (Offline)
+4
-1
The area of the region described by
$$A = \left\{ {\left( {x,y} \right):{x^2} + {y^2} \le 1} \right.$$ and $$\left. {{y^2} \le 1 - x} \right\}$$ is :
A
$${\pi \over 2} - {2 \over 3}$$
B
$${\pi \over 2} + {2 \over 3}$$
C
$${\pi \over 2} + {4 \over 3}$$
D
$${\pi \over 2} - {4 \over 3}$$
4
JEE Main 2013 (Offline)
+4
-1
The area (in square units) bounded by the curves $$y = \sqrt {x,}$$ $$2y - x + 3 = 0,$$ $$x$$-axis, and lying in the first quadrant is :
A
$$9$$
B
$$36$$
C
$$18$$
D
$${{27} \over 4}$$
EXAM MAP
Medical
NEET