1
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The remainder when $\left((64)^{(64)}\right)^{(64)}$ is divided by 7 is equal to

A
4
B
6
C
3
D
1
2
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $1^2 \cdot\left({ }^{15} C_1\right)+2^2 \cdot\left({ }^{15} C_2\right)+3^2 \cdot\left({ }^{15} C_3\right)+\ldots+15^2 \cdot\left({ }^{15} C_{15}\right)=2^m \cdot 3^n \cdot 5^k$, where $m, n, k \in \mathbf{N}$, then $\mathrm{m}+\mathrm{n}+\mathrm{k}$ is equal to :

A
20
B
19
C
18
D
21
3
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For an integer $n \geq 2$, if the arithmetic mean of all coefficients in the binomial expansion of $(x+y)^{2 n-3}$ is 16 , then the distance of the point $\mathrm{P}\left(2 n-1, n^2-4 n\right)$ from the line $x+y=8$ is

A
$\sqrt{2}$
B
$2 \sqrt{2}$
C
$5 \sqrt{2}$
D
$3 \sqrt{2}$
4
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

In the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^n, n \in \mathrm{~N}$, if the ratio of $15^{\text {th }}$ term from the beginning to the $15^{\text {th }}$ term from the end is $\frac{1}{6}$, then the value of ${ }^n \mathrm{C}_3$ is

A
4960
B
2300
C
1040
D
4060
JEE Main Subjects
EXAM MAP