1
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For an integer $n \geq 2$, if the arithmetic mean of all coefficients in the binomial expansion of $(x+y)^{2 n-3}$ is 16 , then the distance of the point $\mathrm{P}\left(2 n-1, n^2-4 n\right)$ from the line $x+y=8$ is

A
$\sqrt{2}$
B
$2 \sqrt{2}$
C
$5 \sqrt{2}$
D
$3 \sqrt{2}$
2
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

In the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^n, n \in \mathrm{~N}$, if the ratio of $15^{\text {th }}$ term from the beginning to the $15^{\text {th }}$ term from the end is $\frac{1}{6}$, then the value of ${ }^n \mathrm{C}_3$ is

A
4960
B
2300
C
1040
D
4060
3
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The sum of all rational terms in the expansion of $(2+\sqrt{3})^8$ is :
A
16923
B
18817
C
3763
D
33845
4
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $\sum\limits_{r=1}^9\left(\frac{r+3}{2^r}\right) \cdot{ }^9 C_r=\alpha\left(\frac{3}{2}\right)^9-\beta, \alpha, \beta \in \mathbb{N}$, then $(\alpha+\beta)^2$ is equal to

A
27
B
81
C
18
D
9
JEE Main Subjects
EXAM MAP