Suppose $A$ and $B$ are the coefficients of $30^{\text {th }}$ and $12^{\text {th }}$ terms respectively in the binomial expansion of $(1+x)^{2 \mathrm{n}-1}$. If $2 \mathrm{~A}=5 \mathrm{~B}$, then n is equal to:
For some $\mathrm{n} \neq 10$, let the coefficients of the 5 th, 6 th and 7 th terms in the binomial expansion of $(1+\mathrm{x})^{\mathrm{n}+4}$ be in A.P. Then the largest coefficient in the expansion of $(1+\mathrm{x})^{\mathrm{n}+4}$ is:
If in the expansion of $(1+x)^{\mathrm{p}}(1-x)^{\mathrm{q}}$, the coefficients of $x$ and $x^2$ are 1 and -2 , respectively, then $\mathrm{p}^2+\mathrm{q}^2$ is equal to :
Let $\alpha, \beta, \gamma$ and $\delta$ be the coefficients of $x^7, x^5, x^3$ and $x$ respectively in the expansion of
$$\begin{aligned}
& \left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5, x>1 \text {. If } u \text { and } v \text { satisfy the equations } \\\\
& \alpha u+\beta v=18, \\\\
& \gamma u+\delta v=20,
\end{aligned}$$
then $\mathrm{u+v}$ equals :