1
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\alpha, \beta, \gamma$ and $\delta$ be the coefficients of $x^7, x^5, x^3$ and $x$ respectively in the expansion of

$$\begin{aligned} & \left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5, x>1 \text {. If } u \text { and } v \text { satisfy the equations } \\\\ & \alpha u+\beta v=18, \\\\ & \gamma u+\delta v=20, \end{aligned}$$

then $\mathrm{u+v}$ equals :

A
4
B
3
C
5
D
8
2
JEE Main 2024 (Online) 9th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of the coefficient of $$x^{2 / 3}$$ and $$x^{-2 / 5}$$ in the binomial expansion of $$\left(x^{2 / 3}+\frac{1}{2} x^{-2 / 5}\right)^9$$ is

A
19/4
B
69/16
C
63/16
D
21/4
3
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The coefficient of $$x^{70}$$ in $$x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}$$ is $${ }^{99} \mathrm{C}_{\mathrm{p}}-{ }^{46} \mathrm{C}_{\mathrm{q}}$$. Then a possible value of $$\mathrm{p}+\mathrm{q}$$ is :

A
61
B
83
C
55
D
68
4
JEE Main 2024 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the term independent of $$x$$ in the expansion of $$\left(\sqrt{\mathrm{a}} x^2+\frac{1}{2 x^3}\right)^{10}$$ is 105 , then $$\mathrm{a}^2$$ is equal to :

A
6
B
4
C
2
D
9
JEE Main Subjects
EXAM MAP