1
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\alpha, \beta, \gamma$ and $\delta$ be the coefficients of $x^7, x^5, x^3$ and $x$ respectively in the expansion of

$$\begin{aligned} & \left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5, x>1 \text {. If } u \text { and } v \text { satisfy the equations } \\\\ & \alpha u+\beta v=18, \\\\ & \gamma u+\delta v=20, \end{aligned}$$

then $\mathrm{u+v}$ equals :

A
4
B
3
C
5
D
8
2
JEE Main 2024 (Online) 9th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of the coefficient of $$x^{2 / 3}$$ and $$x^{-2 / 5}$$ in the binomial expansion of $$\left(x^{2 / 3}+\frac{1}{2} x^{-2 / 5}\right)^9$$ is

A
19/4
B
69/16
C
63/16
D
21/4
3
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The coefficient of $$x^{70}$$ in $$x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}$$ is $${ }^{99} \mathrm{C}_{\mathrm{p}}-{ }^{46} \mathrm{C}_{\mathrm{q}}$$. Then a possible value of $$\mathrm{p}+\mathrm{q}$$ is :

A
61
B
83
C
55
D
68
4
JEE Main 2024 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the term independent of $$x$$ in the expansion of $$\left(\sqrt{\mathrm{a}} x^2+\frac{1}{2 x^3}\right)^{10}$$ is 105 , then $$\mathrm{a}^2$$ is equal to :

A
6
B
4
C
2
D
9
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12